Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States

Ramakrishna Nemani,1 Michael White,2 Peter Thornton,3 Kenlo Nishida,4 Swarna Reddy,1 Jennifer Jenkins,5 and Steven Running1

Received 5 February 2002; revised 30 March 2002; accepted 5 April 2002; published 28 May 2002.

[1] Climate data show significant increases in precipitation and humidity over the U.S. since 1900, yet the role of these hydro-climatic changes directly influence processes involved in carbon uptake (photosynthesis) and release (respiration) from natural vegetation. Whether an active hydrologic cycle results in carbon sequestration (positive uptake) by terrestrial ecosystems, however, is dependent on complex interactions between ecosystem physiology and both the magnitude and timing of changes in hydro-climatic conditions. Given the strong coupling between carbon and hydrologic cycles and reported changes in hydro-climatic conditions, we ask the question: Have observed long-term changes in the hydrologic cycle increased carbon sequestration by U.S. natural vegetation?

2. Data and Methods

[4] We used a mechanistic terrestrial ecosystem model, Biome-BGC, with climate, soil and vegetation data sets from the Vegetation/Ecosystem Modeling and Analysis Project [Schimel et al., 2000; Kittel et al., 1995] to compute daily carbon, water and nitrogen fluxes. Briefly, VEMAP derived daily climate data from 1900–1993 using monthly precipitation and temperature records statistically interpolated both in time and space to produce continuous grids at 0.5° latitude/longitude resolution over the continental U.S. Methods for deriving daily humidity and incident solar radiation, and procedures used for developing vegetation type and soils data are described in Kittel et al. [1995]. A satellite derived land cover map was used to separate aerial extents of natural vegetation from crop-lands in each 0.5° grid cell for estimating continental scale total fluxes from natural vegetation [Schimel et al., 2000]. Modeled fluxes thus represent potential conditions, as they did not include stand age, disturbance history, or carbon export from ecosystems.

[5] Details of Biome-BGC model theory and the parameterization scheme derived from extensive literature survey of eco-physiological parameters for temperate vegetation are available elsewhere [Thornton et al., 2002; White et al., 2000]. Using the pre-industrial VEMAP climate dataset, the model was run to equilibrium conditions for all natural vegetation types within each grid cell. Applying carbon and nitrogen state variables from these pre-industrial conditions, we ran the model from 1900–1993 with daily climate, incorporating changes in annual atmospheric CO2 and industrial N deposition. Another model run was performed without incorporating anthropogenic changes (CO2 & N) to isolate the role of changes in the hydrologic cycle. Unless mentioned otherwise, results are presented for model runs incorporating anthropogenic changes.

[6] We first reduced daily climate fields as well as model output fields (evapotranspiration, ET; total net primary production, NPP; heterotrophic respiration, Rh; and net ecosystem production, NEP, defined as NPP-Rh) to monthly and annual values. Next, to accommodate potential differences in the timing of growing seasons across the continental U.S., we calculated May through October (MO) and November through April (NA) values. We then performed linear trend analysis on both climate and model outputs at monthly, seasonal and annual time scales.

[7] We used ground based net primary production (NPP) estimates from two different sources. First, to show the sensitivity of plant growth to temperature and precipitation, we obtained estimates of above-ground NPP (ANPP) and site climate from Long Term Ecological Research (LTER) sites across the continental U.S. [Knapp and Smith, 2001]. The LTER network collected...
for water. Modeling results showed that anthropogenic changes (CO₂ fertilization & N deposition) enhanced NPP for a given increase in precipitation; however, precipitation remains the primary controlling factor in plant growth.

[9] Simulated forest NPP at the continental scale showed an average increase of 67 g C/m²/yr (from 566 to 633) between 1950–1993, accounting for nearly two thirds of the observed increase in NPP from the national forest assessment (102 g C/m², from 415 to 517 between 1952–1997 [Hicke et al., 2002]). Growth stimulation as well as forest re-growth have been previously suggested as possible causes for the increases in observed forest growth rates in the U.S. [Houghton et al., 1999; Caspersen et al., 2000]. Results from this study indicate a larger role for the stimulation of npp due to changes in biophysical environment.

[10] In the presence of CO₂ fertilization, increases in precipitation stimulated NPP more than Rh indicating the potential for larger carbon sinks under wetter conditions. Between 1950 and 1993, NPP increased by 13.6% (0.35 Gt/44y, p < 0.001) with a mean NPP of 2.57 Gt/yr. The NEP increased by 44% (0.11 Gt/44y, p = 0.03) over the same period with a mean of 0.25 Gt/yr, and exhibited a large inter-annual variation (0.01 to 0.5 Gt/yr). Eddy-covariance observations from forests, Baldocchi et al. [2001] concluded that increased carbon sequestration is possible only with increased availability and use of water. Analysis of our results, showing a strong correlation between evaportranspiration and NEP (NEP = 0.54 * ET − 278.2, R² = 0.59), provide further evidence of such a conclusion even at continental scales. A stimulation of NPP, beyond that provided by CO₂ fertilization, is reportedly required in order to explain observed changes in atmospheric CO₂ concentrations and terrestrial carbon pools [Randerson et al., 1997; Houghton et al., 1999]. We believe that changes in the hydrologic cycle may have provided the added stimulus.

3. Results and Discussion

3.1. Long-term Changes in Climate and Carbon Cycling

[s] During the 20th century, the U.S. climate showed considerable variability with a modest positive trend in precipitation (0.56 mm/yr, p = 0.008) but no trend in temperature (Figure 1). At the continental scale, across a variety of climate, soil and vegetation types, inter-annual variations in modeled carbon cycle components (NPP and Rh, g C/m²/yr) and precipitation (P, mm/yr) were highly correlated (NPP = 0.45 * P + 70.4, R² = 0.62, p < 0.001; Rh = 0.24 * P + 186.6, R² = 0.66, p < 0.001). Similarly strong relationships were found between P and NPP estimates without incorporating CO₂ fertilization (NPP = 0.40 * P + 97.0, R² = 0.58, p < 0.001; Rh = 0.22 * P + 200, R² = 0.69, p < 0.001). Variations in temperature (T) did not influence continental NPP or Rh (NPP = −17.1 * T + 585.0, R² = 0.04; Rh = −5.2 * T + 416.7, R² = 0.01). Observed correlations between ANPP and climate at LTER sites also confirmed the critical role played by precipitation (ANPP = 0.45 * P + 31.3, R² = 0.69, p < 0.001) relative to temperature (ANPP = −19.47 * T + 564.9, R² = 0.11). Between 1950 and 1993, increases in continental average precipitation were substantial (8% or 1.39 mm/yr, p = 0.045). We also observed a strong negative correlation between annual precipitation and annual vapor pressure deficit (VPD = −0.538 * P + 1318, R² = 0.64, p < 0.001). VPD decreased by 5% (~−1.02 Pa/yr, p = 0.017) over the same period. Therefore, increases in precipitation can potentially enhance plant growth both by increasing the supply of and reducing the demand for water. Modeling results showed that anthropogenic changes (CO₂ fertilization & N deposition) enhanced NPP for a given increase in precipitation; however, precipitation remains the primary controlling factor in plant growth.

[9] Simulated forest NPP at the continental scale showed an average increase of 67 g C/m²/yr (from 566 to 633) between 1950–1993, accounting for nearly two thirds of the observed increase in NPP from the national forest assessment (102 g C/m², from 415 to 517 between 1952–1997 [Hicke et al., 2002]). Growth stimulation as well as forest re-growth have been previously suggested as possible causes for the increases in observed forest growth rates in the U.S. [Houghton et al., 1999; Caspersen et al., 2000]. Results from this study indicate a larger role for the stimulation of npp due to changes in biophysical environment.

[10] In the presence of CO₂ fertilization, increases in precipitation stimulated NPP more than Rh indicating the potential for larger carbon sinks under wetter conditions. Between 1950 and 1993, NPP increased by 13.6% (0.35 Gt/44y, p < 0.001) with a mean NPP of 2.57 Gt/yr. The NEP increased by 44% (0.11 Gt/44y, p = 0.03) over the same period with a mean of 0.25 Gt/yr, and exhibited a large inter-annual variation (0.01 to 0.5 Gt/yr). Eddy-covariance observations from forests, Baldocchi et al. [2001] concluded that increased carbon sequestration is possible only with increased availability and use of water. Analysis of our results, showing a strong correlation between evaportranspiration and NEP (NEP = 0.54 * ET − 278.2, R² = 0.59), provide further evidence of such a conclusion even at continental scales. A stimulation of NPP, beyond that provided by CO₂ fertilization, is reportedly required in order to explain observed changes in atmospheric CO₂ concentrations and terrestrial carbon pools [Randerson et al., 1997; Houghton et al., 1999]. We believe that changes in the hydrologic cycle may have provided the added stimulus.

3.2. Seasonal Changes in Climate and Carbon Cycling

[11] Changes in carbon cycling also showed significant variation through the year as a consequence of monthly and seasonal trends in continental scale climate and carbon cycling variables. Warmer and wetter spring months first enhanced Rh. Then, as daylengths and incident solar radiation increased in the spring, NPP responded strongly during the months of May and June. Cooler and wetter conditions during September and October further contributed to increased NPP (Figure 2). The net result was an expansion of the carbon uptake period by vegetation, which was shown to be positively related to carbon sequestration [Baldocchi et al., 2001]. The asymmetric changes in modeled NPP and Rh provide further evidence for the reported changes in vegetation activity, seasonality and amplitude of atmospheric CO₂ concentrations [Houghton, 1987; Keeling et al., 1996; Randerson et al., 1997; Myneni et al., 1997; Woodwell et al., 1998].

3.3. Spatial Distribution of Changes in Climate and Carbon Cycling

[12] Figure 3 shows that changes in climate and ecosystem responses to such changes were quite variable across the U.S. For example, between 1950 and 1993, continental U.S. air temperatures increased in the west and cooled in the east. On the other hand, annual precipitation showed a general increase over the continent except over the Pacific Northwest. When increases in precipitation coincided with growing season water demands by vegetation, NPP responded positively. Warmer spring temperatures over the Pacific Northwest may have stimulated earlier plant growth [Cayan et al., 2001], but a reduction in precipitation over this region through the year negated their positive impacts on NPP. Stream flow volume records from 1944–1993 also showed decreasing trends in this region [Lins and Slack, 1999], a further indication of drought stress during the summer months.

[13] The range of modeled annual average NEP (0–180 g C/m²/yr between 1950–1993) over the continental U.S. is smaller than observed net ecosystem exchange from eddy-covariance towers
Globally, mid- and high-latitude ecosystems benefited from both increased amounts of precipitation and warmer spring temperatures after the mid-1970s, and may have contributed to the well known mid-latitude carbon sink [Dai and Fung, 1993; Dai et al., 1997]. Changes in ocean circulation and the ocean-atmosphere tele-connections since the mid-1970s have been identified as possible mechanisms behind recent increases in precipitation over the continental U.S. [Dai et al., 1997]. It is therefore conceivable that future changes in ocean-atmosphere oscillations may alter the current patterns of carbon cycling. The potential for enhanced plant growth from CO₂ fertilization is globally significant, but the ability of a given ecosystem to take advantage of the enriched CO₂ environment depends on optimal climatic conditions. In this context, results from this study show that recent changes in the hydrologic cycle interacted positively with CO₂ fertilization, contributing to higher rates of carbon sequestration over large areas of the U.S.

[16] Acknowledgments. Funding from NASA Earth Science Enterprise supported this research through NAG13-2002, NAS5-31368 and NAGW-6575. We thank members of the VEMAP project for their contributions to the data sets used in this project. We thank Dave Keeling and Richard Waring for helpful suggestions.

References


S. Running, R. Nemani, and S. Reddy, University of Montana, Missoula, MT, USA.

M. White, Utah State University, Logan, UT, USA.

P. Thornton, National Center for Atmospheric Research, Boulder, CO, USA.

K. Nishida, University of Tsukuba, Japan.

J. Jenkins, USDA Forest Service, Burlington, VT, USA.